Synthesis and Properties of a New d^1 Compound Sr₄V₃O_{9.8} with Layered Structure

MITSURO ITOH, MASAHIRO SHIKANO, RUIXING LIANG, HITOSHI KAWAJI, AND TETSURŎ NAKAMURA

Research Laboratory of Engineering Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan

Communicated by J. M. Honig, July 9, 1990

A new layered compound $Sr_4V_3O_{9,8}$ with the $Sr_4Ti_3O_{10}$ structure was successfully synthesized and electrical resistivity and magnetic susceptibility measurements were carried out. The unit cell dimensions of $Sr_4V_3O_{9,8}$ were found to be a = 0.38428(3) nm and c = 2.7902(2) nm. The slope of the resistivity vs temperature curve changed from slightly negative to positive at a temperature of ~ 70 K as the temperature was increased. The magnetic susceptibility of the sample could be fitted by the Curie–Weiss law, $\chi = \chi_0 + C/(T - \Theta)$, with $\chi_0 = 1.06 \times 10^{-3}$ emu·mole⁻¹, $\Theta = -66$ K, and $C = 5.88 \times 10^{-2}$ emu·K·mole⁻¹. \odot 1990 Academic Press, Inc.

Introduction

Cubic perovskite-type SrVO₃ is known to be a metallic conductor (1-4) whose conductivity has been interpreted in terms of an overlapping band model corresponding to two pseudoparticle states with $1\pi^*$ and $2\pi^*$ electrons per V⁴⁺ ions (4). Recently, Cyrot *et al.* (5, 6) have reported the semiconductive and antiferromagnetic 3d¹ compound Sr₂VO₄ with the K₂NiF₄ structure. Usually Sr₂VO₄ is prepared in an H₂ atmosphere at high temperatures; it is recognized to be difficult to obtain in a single phase (7).

Recent research on the high- T_c oxide superconductors containing copper with the layered structure have aroused our interest concerning whether or not layered compounds composed of MO₆ octahedra containing metal ions other than copper show a

superconductivity. In this letter, we report the synthesis and the properties of a new layered d^1 compound $Sr_4V_3O_{9,8}$.

Experimental

The sample was synthesized by a solid state reaction of a stoichiometric mixture of powders of SrCO₃ (99.9% purity) and V₂O₅ (99.99% purity). The powders were thoroughly mixed in an agate mortar with ethanol and pressed into a pellet of 20 mm diameter and 3 mm thickness at a pressure of 60 MPa. The pressed powder was calcined at 1273 K for 12 hr in H₂ with one intermediate pulverization and pelletization. The calcined powder was pulverized, pressed into a pellet of 15 mm diameter and 2 mm thickness at a pressure of 80 MPa and heated at 1573 K in an H₂ atmosphere for 12 hr with

one intermediate pulverization and pelletization. After the final heating, the sample was furnace-cooled in H_2 .

The powder was characterized at room temperature by powder X-ray diffraction, using a Rigaku horizontal $\Theta - \Theta$ diffractometer with a curved graphite monochromator for $2\Theta = 5-120^\circ$, employing a Cu target X-ray tube ($\lambda = 0.15402$ nm) at 40 kV and 25 mA. To avoid possible overlap errors, nonoverlapping peaks higher than $2\Theta = 80^{\circ}$ were used to determine the unit cell dimensions. Silicon powder was used as an internal standard. The electrical resistivity of the sample was measured using the dc fourprobe method with a current density of 160 A/m^2 . The magnetic susceptibility of the sample above 77 K was measured by a Shimazu MB-2 Faraday-type magnetic balance.

The oxygen content of the sample was determined from the mass increase in the sample after heating at 1173 K for 12 hr in air.

Results and Discussion

The oxygen content of the sample was found to be 9.8, as determined by oxidation of vanadium ions to the 5+ valence state.

Figure 1 shows the X-ray diffraction pattern for the sample $Sr_4V_3O_{9,8}$. Almost all peaks were indexed by a body centered te-

FIG. 1. X-ray diffraction pattern for Sr₄V₃O_{9.8}.

FIG. 2. Temperature dependence of the electrical resistivity for $Sr_4V_3O_{9.8}$.

tragonal cell (space group I4/mmm) with dimensions a = 0.38428(3) nm and c = 2.7902(2) nm. The diffraction data are presented in Table I. The diffraction pattern implies that $Sr_4V_3O_{9.8}$ has the $Sr_4Ti_3O_{10}$ structure which is composed of three alternate layers of perovskite and rock salt (SrO) along the *c*-direction.

Figure 2 shows the resistivity of the sample measured by the dc four-probe method. As shown in this figure, the slope of the resistivity changes from slightly negative to positive near \sim 70 K.

Figure 3 shows the magnetic susceptibility of the sample above 77 K. The data showed a paramagnetic $\chi(T)$ dependence and were analyzed according to the expression

$$\chi = \chi_0 + C/(T - \Theta)$$

where χ_0 is the temperature-independent paramagnetism, and the second term represents the usual paramagnetic temperature variation with the Curie constant *C* and the characteristic temperature Θ . The $\chi(T)$ value was corrected by subtracting the orbital diamagnetism of the relevant ions $\chi_{dia} = -0.20 \times 10^{-3}$ emu per one mole of

h	k	ı	d _{obs.} (nm)	d _{cal.} (nm)	1
0	0	2	1.41	1.3951	1
0	0	4	0.70	0.6976	2
0	0	6	0.467	0.4650	1
1	0	1	0.382	0.3807	4
1	0	3	0.356	0.3551	1
0	0	8	0.3492	0.3488	5
1	0	5	0.3170	0.3165	20
1	0	7	0.2768	0.2767	100
1	1	0	0.2720	0.2717	65
1	1	2	0.2666	0.2667	1
1	1	4	0.2534	0.2532	1
1	0	9	0.2414	0.2413	5
1	1	6	0.2348	0.2346	5
0	0	<u>12</u>	0.2328	0.2325	1
1	1	8	0.2145	0.2144	28
1	0	<u>11</u>	0.2120	0.2117	2
0	0	<u>14</u>	0.1993	0.1993	21
1	1	<u>10</u>	0.1946	0.1947	3
2	0	0	0.1921	0.1921	49
1	0	<u>13</u>	0.1874	0.1874	l
2	0	6	0.1775	0.1776	<1
1	1	<u>12</u>	0.1767	0.1767	2
0	0	<u>16</u>	0.1743	0.1744	4
2	1	1	0.1715	0.1715	2
2	1	3	0.1691	0.1690	-
2	0	8	0.1683	0.1683	7
1	0	<u>15</u>	0.1674	0.16/4/	
2	1	5	0.1643	0.1642	1
1	1	$\frac{14}{14}$	0.1607	0.1607	1
2	0	<u>10</u>	0.1583	0.1583	46
2	1	1	0.1578	0.15787	
0	0	18	0.1550	0.1550	1
1	0	$\frac{17}{2}$	0.1510	0.1509	<1
2	1	9	0.1503	0.1503	د
2	0	12	0.1482	0.1481	1
1	1	<u>16</u>	0.1467	0.1468	3
2	i i	11	0.1422	0.1423	ا 1 -
0	0	$\frac{20}{14}$	0.1394	0.1395	<1
2	0	14	0.1383	0.1383	16
1	0	19	0.1376	0.13/2	2
2	2	U 2	0.1359	0.1359	15
2	2	2	0.1246	0.1352 /	
1	1	18	0.1346	0.1346	<i /</i
2	I	13	0.1343	0.1342	<
2	U	10	0.1291	0.1291	4

FIG. 3. Temperature dependences of the magnetic susceptibility χ (left ordinate) and $(\chi - \chi_0)^{-1}$ (right ordinate) of Sr₄V₃O_{9.8}.

Sr₄V₃O_{9.8} The parameters χ_0 , *C*, and Θ were estimated by the least-mean squares technique to yield $\chi_0 = 1.06 \times 10^{-3}$ emu· mole⁻¹, *C* = 5.88 × 10⁻² emu·K·mole⁻¹, and $\Theta = -66$ K. We note the following characteristics: (1) χ_0 reflects the metallic conductivity shown in Fig. 2. (2) Θ indicates a characteristic temperature corresponding to the antiferromagnetic interaction between vanadium ions. (3) The Curie constant reflects the effective magnetic moment of vanadium ions as expressed by

$$C = 3(P_{\rm eff}^2 \mu_{\rm B}^2/k_{\rm B}) \cdot N_0,$$

where P_{eff} is the effective Bohr magneton number as an index of the magnetic moment strength of the vanadium ions. Using this equation, the number P_{eff} was obtained as 0.396 per one mole of vanadium ions. Since the "ideal" ionic composition $Sr_4V_3O_{10-x}$ is represented by $Sr_4^{2+}V_{3-2x}^{4+}V_{2x}^{3+}O_{10-x}^{2-}$, the $Sr_4V_3O_{9,8}$ compound is representable as $Sr_4^{2+}V_{2,6}^{4+}V_{3,4}^{3+}O_{2,8}^{2-}$. The weak paramagnetism for the sample may be attributed to a contribution from localized V^{3+} ions $(3d^2)$.

Acknowledgment

The authors express their thanks for financial support through a Grand-in Aid for Scientific Research on Chemistry of New Superconductors, from the Ministry of Education of the Japanese Government.

References

- 1. S. SCHMALFUSS, Z. Chem. 15, 289 (1975).
- FELTS AND S. SCHMALFUSS, Z. Anorg. Allg. Chem. 417, 137 (1975).
- 3. B. L. CHAMBERLAND AND P. S. DANIELSON, J. Solid State Chem. 3, 243 (1971).

- 4. P. DOUGIER, JOHN C. C. FAN, AND J. B. GOOD-ENOUGH, J. Solid State Chem. 14, 247 (1971).
- M. CYROT, B. LAMBERT-ANDRON, J. L. SOUBEY-ROUX, M. J. REY, P H. DEHAUGHT, F. CYROT-LACKMANN, G. FOURCAUDOT, J. BEILLE, AND J. L. THOLENCE, J. Solid State Chem. 85, 321 (1990).
- 6. M. J. REY, P.H. DEHAUDT, J. C. JOUBERT, B. LAM-BERT-ANDRON, M. CYROT, AND F. CYROT-LACK-MANN, J. Solid State Chem. 86, 101 (1990).
- T. PALANISAMY, J. GOPALAKRISHNAN, AND M. V. C. SASTRI, Z. Anorg. Allg. Chem. 415, 275 (1975).